Key features of this estimation technique are:
 For any given volatility, the further into the future you estimate, the higher the
increase and the lower the decrease. This is a desirable quality in a risk management
process. Without it, it would imply that a longer term risk is lower than a shorter
term risk, which is counterintuitive.
 For any given point in time, the higher the volatility, the higher the increase and
the lower the decrease. An intuitively appealing property.
 The projections are asymmetrical; they increase infinitely but decrease at a
decreasing rate, approaching, but never reaching zero. This is also a desirable
quality since most market variables cannot be negative.
Variation of the Lognormal Estimation Formula: In some applications, the Lognormal Estimation Formula is
modified so that .5 * vol^2 * t is omitted. At low volatilities and short time frames, the inclusion or omission of
this term will have a negligible impact on the estimation. However, at higher volatilities and/or longer time frames,
the omission of this term will result in higher increasing and lower decreasing estimations. This is done as a conservative precautionary measure
because the inclusion of the term may result in longer term increasing estimations being lower than shorter term increasing estimations and
longer term decreasing estimations being higher than shorter term decreasing estimations, which is counterintuitive and undesirable within a
risk management framework. However, the risk management process must address this issue to insure that potentially unreasonable estimations do not result
in incorrect decisions.
What are the underlying assumptions for using the Lognormal Estimation
formula?
The Lognormal Estimation formula is based on the assumption that the underlying variable has
the property that the log of its returns are normally distributed.
Is this a valid assumption for most financial variables?
Sortofkindof, but not strictly. Most financial variables have "fattailed" distributions,
which means that the probability of the extreme events (the tails) is higher than what you would
expect under a strict normal distribution. That is why the "once in 100 year event" seems to
happen every few years.

If everyone knows that the normal distribution assumption is not strictly
valid, why do they still use it?
The primary reason to use it is that there is no viable statistical alternative.
Several years ago researchers reported that they had figured out the shape of the fattail
by looking at large amounts of diverse data. While this is an important beginning, working
with the distribution is not viable without a mathematical framework to make calculations, and
the framework has not yet been developed.
Additionally, it is argued that given the sensitivity of the result to the volatility input variable
(which is subject to interpretation), the additional
error caused by using a somewhat flawed statistical approach is insignificant.
If the user is still uncomfortable with the potential understatement of the risk due to the model
limitations, the confidence level can be increased, e.g., from 95% to 97.5%.
What are some of the most commonly encountered problems with the use of
this approach?
Extremely high estimates  Since the projections will increase infinitely,
this formula may
result in extremely high values for variables. This problem manifests itself most commonly
in interest rates. Interest rates, at least in developed countries, are usually assumed to
"mean revert", i.e., they may get high for a period of time, but they will then come back down
within "normal" levels. The model may estimate such high rates that most users would question
their economic viability.
In the case of developing countries, high volatilities combined with high current rates can
also produce dramatically high estimates, although arguments against them may be muted.
Developing Market currencies  If the currency is pegged, the observed historical volatility
will be zero. If the currency is a managed, the volatility may be relatively low and/or there
may be a managed devaluation.
The zero or low volatility will produce a zero or low estimated change, which ignores the very
real possibility of a sudden devaluation. This contingency is sometimes modeled with a jump
process. Briefly, jump processes allow for the inclusion of a statistical probability for a
sudden change in the variable (typically a drop inthe value of the currency).
Additionally, managed devaluations should be reflected in the estimate by including a nonzero
drift term.
Individual equities  The use of this statistical approach for equity indices is
usually considered reasonable. However, its use for individual equities is usually
frowned upon because price changes of individual equities are subject to the idiosyncratic risks
of the company (i.e., there are so many jumps that the "normal distribution" assumption cannot be
considered valid).
